Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.020
Filtrar
1.
Clin Cancer Res ; 29(13): 2525-2539, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36729148

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDA) resists immunotherapy of adoptive cell transfer (ACT) and immune checkpoint inhibitors. Understanding the mechanisms underlying this resistance will improve PDA immunotherapy. This study investigated therapeutic effects and underlying mechanisms of anticoagulants on immunotherapy in PDA. EXPERIMENTAL DESIGN: The antitumor activity of immunotherapy was evaluated in mouse models of desert, excluded, and inflamed tumors. The underlying mechanisms were investigated by analyzing immune cell infiltration by immunofluorescence imaging and tumor microcirculation by interstitial fluid pressure and coagulation status measurement. RESULTS: Combined use of heparin and ACT inhibited tumor growth and metastasis, whereas neither heparin nor ACT had any therapeutic effect. The combination of heparin and ACT significantly increased the intratumor infiltration of CD8+ T cells and M1 macrophages and reduced the infiltration of immunosuppressive M2 macrophages and FOXP3+/CD4+ regulatory T cells (Treg). Assessments of tumor microenvironment revealed that heparin promoted tumor vascular regression and normalized the remaining blood vessels, facilitating the extravasation and perivascular accumulation of activated CD8+ T cells in tumors. Mechanistically, tumor microvessel hemodynamic properties were significantly improved by heparin, which is consistent with its inhibitory effects on tumor angiogenesis. Similarly, the combination of heparin and anti-PD1 also produced a pronounced antitumor activity, whereas neither heparin nor anti-PD1 treatment had appreciable antitumor activity. CONCLUSIONS: Combined treatment of heparin and ACT or anti-PD1 produced synergistic antitumor effects, which were at least in part through tumor vascular normalization, hence increased antitumor T-cell responses due to reduced Treg infiltration and increased M1 macrophage polarization. This synergistic combination therapy warrants clinical evaluation. See related commentary by Korc, p. 2348.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Heparina/farmacologia , Anticoagulantes/farmacologia , Microcirculação/efeitos dos fármacos , Neoplasias Pancreáticas/patologia , Imunoterapia , Carcinoma Ductal Pancreático/patologia , Microambiente Tumoral/imunologia , Neoplasias Pancreáticas
2.
Clin Hemorheol Microcirc ; 83(3): 287-292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36591655

RESUMO

Cannabinoids play critical roles in human pathophysiology through the cannabinoid (CB) receptors and non-CB receptors on variety of cells, tissues, and organs. Microvasculature with the inside bloodstream containing the plasmatic and cellular components exerts multiple functions in maintaining tissue and organ physiology through microcirculation. This review focusses on the impact of cannabinoids on the microvasculature, including mechanisms mediated by both CB receptor-related pathways and CB receptor-independent pathways.


Assuntos
Canabinoides , Microcirculação , Microvasos , Receptores de Canabinoides , Humanos , Canabinoides/farmacologia , Microvasos/efeitos dos fármacos , Receptor CB2 de Canabinoide , Microcirculação/efeitos dos fármacos
3.
Pregnancy Hypertens ; 27: 81-86, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34973597

RESUMO

Women who have had preeclampsia demonstrate microvascular endothelial-dysfunction, mediated in part by reduced nitric oxide (NO)-dependent dilation. Preeclamptic pregnancies are associated with elevated inflammation, and inhibition of inflammation attenuates endothelial damage in animal models of preeclampsia. However, it is unclear if inhibition of vascular inflammation improves endothelial function in women after a preeclamptic pregnancy. Using the cutaneous microcirculation as a model, we hypothesized that acute systemic inhibition of vascular inflammation (oral salsalate; 1500 mg/twice daily, 4 days) would improve endothelium- and NO-dependent vasodilation in women with a history of preeclampsia (PE) but not in women with a history of uncomplicated pregnancy (HC). Twelve HC (30 ± 1yrs, 10 ± 2 months postpartum) and 10 PE (30 ± 2yrs, 8 ± 2 months postpartum) participated in a double-blind placebo-controlled study. Following each treatment, 2 intradermal microdialysis fibers were placed in the skin of the ventral forearm for graded infusion of acetylcholine (Ach, 10-7-102mM) or Ach + 15 mM L-NAME (NO synthase antagonist). Red blood cell flux was measured over each site by laser-Doppler flowmetry (LDF). Cutaneous vascular conductance was calculated (CVC = LDF/mean arterial pressure) and normalized to maximum (%CVCmax; 28 mM SNP + local heat 43 °C). ACh-induced (77 ± 3 vs. 92 ± 3%CVCmax; p = 0.01) and NO-dependent (20 ± 6 vs. 33 ± 4%; p = 0.02) vasodilation were attenuated in PE compared to HC. Salsalate augmented ACh-induced (95 ± 2%CVCmax; p = 0.002) and NO-dependent (39 ± 3%; p = 0.009) dilation in PE compared to placebo but had no effect in HC (all p > 0.05). Salsalate treatment augmented endothelium-dependent vasodilation via NO-mediated pathways in women who have had preeclampsia, suggesting that inflammatory signaling mediates persistent endothelial dysfunction following preeclampsia.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Endotélio Vascular/efeitos dos fármacos , Pré-Eclâmpsia/tratamento farmacológico , Salicilatos/administração & dosagem , Administração Oral , Adulto , Anti-Inflamatórios não Esteroides/farmacologia , Método Duplo-Cego , Feminino , Humanos , Microcirculação/efeitos dos fármacos , Pré-Eclâmpsia/fisiopatologia , Gravidez , Salicilatos/farmacologia , Pele/irrigação sanguínea
4.
Am J Physiol Heart Circ Physiol ; 322(2): H319-H327, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995164

RESUMO

Vascular dysfunction has been reported in adults who have recovered from COVID-19. To date, no studies have investigated the underlying mechanisms of persistent COVID-19-associated vascular dysfunction. Our purpose was to quantify nitric oxide (NO)-mediated vasodilation in healthy adults who have recovered from SARS-CoV-2 infection. We hypothesized that COVID-19-recovered adults would have impaired NO-mediated vasodilation compared with adults who have not had COVID-19. In methods, we performed a cross-sectional study including 10 (5 men/5 women, 24 ± 4 yr) healthy control (HC) adults who were unvaccinated for COVID-19, 11 (4 men/7 women, 25 ± 6 yr) healthy vaccinated (HV) adults, and 12 (5 men/7 women, 22 ± 3 yr) post-COVID-19 (PC, 19 ± 14 wk) adults. COVID-19 symptoms severity (survey) was assessed. A standardized 39°C local heating protocol was used to assess NO-dependent vasodilation via perfusion (intradermal microdialysis) of 15 mM NG-nitro-l-arginine methyl ester during the plateau of the heating response. Red blood cell flux was measured (laser-Doppler flowmetry) and cutaneous vascular conductance (CVC = flux/mmHg) was expressed as a percentage of maximum (28 mM sodium nitroprusside + 43°C). In results, the local heating plateau (HC: 61 ± 20%, HV: 60 ± 19%, PC: 67 ± 19%, P = 0.80) and NO-dependent vasodilation (HC: 77 ± 9%, HV: 71 ± 7%, PC: 70 ± 10%, P = 0.36) were not different among groups. Neither symptom severity (25 ± 12 AU) nor time since diagnosis correlated with the NO-dependent vasodilation (r = 0.46, P = 0.13; r = 0.41, P = 0.19, respectively). In conclusion, healthy adults who have had mild-to-moderate COVID-19 do not have altered NO-mediated cutaneous microvascular function.NEW & NOTEWORTHY Healthy young adults who have had mild-to-moderate COVID-19 do not display alterations in nitric oxide-mediated cutaneous microvascular function. In addition, healthy young adults who have COVID-19 antibodies from the COVID-19 vaccinations do not display alterations in nitric oxide-mediated cutaneous microvascular function.


Assuntos
COVID-19/fisiopatologia , Microcirculação/fisiologia , Pele/irrigação sanguínea , Vasodilatação/fisiologia , Adulto , COVID-19/metabolismo , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Estudos de Casos e Controles , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Fluxometria por Laser-Doppler , Masculino , Microcirculação/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , SARS-CoV-2 , Índice de Gravidade de Doença , Vasodilatação/efeitos dos fármacos , Adulto Jovem
5.
Am J Physiol Endocrinol Metab ; 322(2): E173-E180, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34957859

RESUMO

Microvascular insulin resistance is present in metabolic syndrome and may contribute to increased cardiovascular disease risk and the impaired metabolic response to insulin observed. Metformin improves metabolic insulin resistance in humans. Its effects on macro and microvascular insulin resistance have not been defined. Eleven subjects with nondiabetic metabolic syndrome were studied four times (before and after 12 wk of treatment with placebo or metformin) using a crossover design, with an 8-wk washout interval between treatments. On each occasion, we measured three indices of large artery function [pulse wave velocity (PWV), radial pulse wave separation analysis (PWSA), brachial artery endothelial function (flow-mediated dilation-FMD)] as well as muscle microvascular perfusion [contrast-enhanced ultrasound (CEU)] before and at 120 min into a 150 min, 1 mU/min/kg euglycemic insulin clamp. Metformin decreased body mass index (BMI), fat weight, and % body fat (P < 0.05, each), however, placebo had no effect. Metformin (not placebo) improved metabolic insulin sensitivity, (clamp glucose infusion rate, P < 0.01), PWV, and FMD after insulin were unaffected by metformin treatment. PWSA improved with insulin only after metformin P < 0.01). Insulin decreased muscle microvascular blood volume measured by contrast ultrasound both before and after placebo and before metformin (P < 0.02 for each) but not after metformin. Short-term metformin treatment improves both metabolic and muscle microvascular response to insulin. Metformin's effect on microvascular insulin responsiveness may contribute to its beneficial metabolic effects. Metformin did not improve aortic stiffness or brachial artery endothelial function, but enhanced radial pulse wave properties consistent with relaxation of smaller arterioles.NEW & NOTEWORTHY Metformin, a first-line treatment for type 2 diabetes, is often used in patients with insulin resistance and metabolic syndrome. Here, we provide the first evidence for metformin improving muscle microvascular insulin sensitivity in insulin-resistant humans. Simultaneously, metformin improved muscle glucose disposal, supporting a close relationship between insulin's microvascular and its metabolic actions in muscle. Whether enhanced microvascular insulin sensitivity contributes to metformin's ability to decrease microvascular complications in diabetes remains to be resolved.


Assuntos
Hipoglicemiantes/administração & dosagem , Resistência à Insulina , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Metformina/administração & dosagem , Microcirculação/efeitos dos fármacos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Artérias/efeitos dos fármacos , Artérias/metabolismo , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Glicemia/metabolismo , Índice de Massa Corporal , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Feminino , Técnica Clamp de Glucose , Humanos , Insulina/administração & dosagem , Insulina/metabolismo , Masculino , Pessoa de Meia-Idade , Análise de Onda de Pulso , Distribuição Aleatória , Resultado do Tratamento , Rigidez Vascular/efeitos dos fármacos
6.
J Vasc Res ; 59(1): 24-33, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34784595

RESUMO

OBJECTIVE: The aim of this study was to investigate the effect of oral supplementation with L-arginine on serum biochemical profile, blood pressure, microcirculation, and vasoreactivity/endothelial function in young controls, and elderly women with and without type 2 diabetes mellitus (T2DM). METHODS: Healthy young (n = 25), healthy elderly (n = 25), and elderly women with type 2 diabetes mellitus (T2DME, n = 23, glycated Hb ≥6.4% and mean of 7.7 years for duration of the disease), aged 18-30 and older than 65 years, respectively, were included in the study. All patients underwent biochemical analysis (fasting glycemia and lipidogram), arterial blood pressure, nailfold videocapillaroscopy (capillary diameters, functional capillary density [FCD], peak red blood cell velocity [RBCVmax] after 1 min ischemia, time to reach peak RBCV [TRBCVmax]), and venous occlusion plethysmography (vasoreactivity), before and after 14 days of oral supplementation with L-arginine (5 g/day). RESULTS: L-Arginine did not change fasting glycemia and lipidogram, but it decreased systolic, diastolic, and mean arterial pressure in elderly women, increased RBCVmax in all groups, and did not decrease TRBCVmax in T2DME. Capillary diameters and FCD remained unchanged in all groups. L-Arginine improved vasoreactivity during reactive hyperemia and after sublingual nitroglycerin (0.4 mg) in all groups. CONCLUSION: L-Arginine supplementation (5g/day during 14 days) was able to improve vascular/microvascular health in the elderly women with or without T2DM.


Assuntos
Arginina/administração & dosagem , Diabetes Mellitus Tipo 2/tratamento farmacológico , Suplementos Nutricionais , Antebraço/irrigação sanguínea , Hemodinâmica/efeitos dos fármacos , Microcirculação/efeitos dos fármacos , Unhas/irrigação sanguínea , Administração Oral , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Pressão Arterial/efeitos dos fármacos , Biomarcadores/sangue , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Humanos , Angioscopia Microscópica , Pletismografia , Fatores Sexuais , Fatores de Tempo , Resultado do Tratamento , Vasodilatação/efeitos dos fármacos , Adulto Jovem
7.
Mol Neurobiol ; 59(1): 574-589, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34735672

RESUMO

Phosphodiesterase 10A (PDE10A) hydrolyzes adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP). It is highly expressed in the striatum. Recent evidence implied that PDE10A may be involved in the inflammatory processes following injury, such as ischemic stroke. Its role in ischemic injury was unknown. Herein, we exposed mice to 90 or 30-min middle cerebral artery occlusion, followed by the delivery of the highly selective PDE10A inhibitor TAK-063 (0.3 mg/kg or 3 mg/kg) immediately after reperfusion. Animals were sacrificed after 24 or 72 h, respectively. Both TAK-063 doses enhanced neurological function, reduced infarct volume, increased neuronal survival, reduced brain edema, and increased blood-brain barrier integrity, alongside cerebral microcirculation improvements. Post-ischemic neuroprotection was associated with increased phosphorylation (i.e., activation) of pro-survival Akt, Erk-1/2, GSK-3α/ß and anti-apoptotic Bcl-xL abundance, decreased phosphorylation of pro-survival mTOR, and HIF-1α, MMP-9 and pro-apoptotic Bax abundance. Interestingly, PDE10A inhibition reduced inflammatory cytokines/chemokines, including IFN-γ and TNF-α, analyzed by planar surface immunoassay. In addition, liquid chromatography-tandem mass spectrometry revealed 40 proteins were significantly altered by TAK-063. Our study established PDE10A as a target for ischemic stroke therapy.


Assuntos
Edema Encefálico/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , AVC Isquêmico/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Inibidores de Fosfodiesterase/uso terapêutico , Diester Fosfórico Hidrolases/metabolismo , Animais , Edema Encefálico/metabolismo , Modelos Animais de Doenças , AVC Isquêmico/metabolismo , Camundongos , Microcirculação/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Piridazinas/farmacologia , Piridazinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
8.
Cardiovasc Res ; 118(1): 53-64, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33620071

RESUMO

It is well established that the vasculature plays a crucial role in maintaining oxygen and nutrients supply to the heart. Increasing evidence further suggests that the microcirculation has additional roles in supporting a healthy microenvironment. Heart failure is well known to be associated with changes and functional impairment of the microvasculature. The specific ablation of protective signals in endothelial cells in experimental models is sufficient to induce heart failure. Therefore, restoring a healthy endothelium and microcirculation may be a valuable therapeutic strategy to treat heart failure. This review article will summarize the current understanding of the vascular contribution to heart failure with reduced or preserved ejection fraction. Novel therapeutic approaches including next generation pro-angiogenic therapies and non-coding RNA therapeutics, as well as the targeting of metabolites or metabolic signalling, vascular inflammation and senescence will be discussed.


Assuntos
Indutores da Angiogênese/uso terapêutico , Vasos Coronários/efeitos dos fármacos , Terapia Genética , Insuficiência Cardíaca Diastólica/terapia , Insuficiência Cardíaca Sistólica/terapia , Microvasos/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Vacinas/uso terapêutico , Indutores da Angiogênese/efeitos adversos , Animais , Circulação Coronária/efeitos dos fármacos , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , Terapia Genética/efeitos adversos , Insuficiência Cardíaca Diastólica/genética , Insuficiência Cardíaca Diastólica/metabolismo , Insuficiência Cardíaca Diastólica/fisiopatologia , Insuficiência Cardíaca Sistólica/genética , Insuficiência Cardíaca Sistólica/metabolismo , Insuficiência Cardíaca Sistólica/fisiopatologia , Humanos , Microcirculação/efeitos dos fármacos , Microvasos/metabolismo , Microvasos/fisiopatologia , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Recuperação de Função Fisiológica , Vacinas/efeitos adversos , Função Ventricular Esquerda/efeitos dos fármacos
9.
Shock ; 57(3): 457-466, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34559745

RESUMO

ABSTRACT: Acute normovolemic hemodilution (ANH) is associated with low oxygen carrying capacity of blood and purposed to cause renal injury in perioperative setting. It is best accomplished in a perioperative setting by a colloid such as hydroxyl ethyl starch (HES) due its capacity to fill the vascular compartment and maintain colloidal pressure. However, alterations of intra renal microvascular perfusion, flow and its effects on renal function and damage during ANH has not been sufficiently clarified. Based on the extensive use of HES in the perioperative setting we tested the hypothesis that the use of HES during ANH is able to perfuse the kidney microcirculation adequately without causing renal dysfunction and injury in pigs. Hemodilution (n = 8) was performed by stepwise replacing blood with HES to hematocrit (Hct) levels of 20% (T1), 15% (T2), and 10% (T3). Seven control animals were investigated. Systemic and renal hemodynamics were monitored. Renal microcirculatory perfusion was visualized and quantified using contrast-enhanced ultrasound (CEUS) and laser speckle imaging (LSI). In addition, sublingual microcirculation was measured by handheld vital microscopy (HVM). Intrarenal mean transit time of ultrasound contrast agent (IRMTT-CEUS) was reduced in the renal cortex at Hct 10% in comparison to control at T3 (1.4 ±â€Š0.6 vs. 2.2 ±â€Š0.7 seconds, respectively, P < 0.05). Although renal function was preserved, the serum neutrophil gelatinase-associated lipocalin (NGAL) levels was higher at Hct 10% (0.033 ±â€Š0.004 pg/µg protein) in comparison to control at T3 (0.021 ±â€Š0.002 pg/µg protein. A mild correlation between CO and IRMTT (renal RBC velocity) (r -0.53; P = 0.001) and CO and NGAL levels (r 0.66; P = 0.001) was also found. Our results show that HES induced ANH is associated with a preserved intra renal blood volume, perfusion, and function in the clinical range of Hct (<15%). However, at severely low Hct (10%) ANH was associated with renal injury as indicated by increased NGAL levels. Changes in renal microcirculatory flow (CEUS and LSI) followed those seen in the sublingual microcirculation measured with HVM.


Assuntos
Injúria Renal Aguda/prevenção & controle , Hemodiluição/efeitos adversos , Derivados de Hidroxietil Amido/uso terapêutico , Rim/irrigação sanguínea , Microcirculação/efeitos dos fármacos , Substitutos do Plasma/uso terapêutico , Injúria Renal Aguda/etiologia , Animais , Meios de Contraste , Modelos Animais de Doenças , Feminino , Hematócrito , Rim/diagnóstico por imagem , Imagem de Contraste de Manchas a Laser , Lipocalina-2/sangue , Suínos , Ultrassonografia
10.
Am J Clin Nutr ; 115(2): 444-455, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34581759

RESUMO

BACKGROUND: Endogenously formed advanced glycation end products (AGEs) may be important drivers of microvascular dysfunction and the microvascular complications of diabetes. AGEs are also formed in food products, especially during preparation methods involving dry heat. OBJECTIVES: We aimed to assess cross-sectional associations between dietary AGE intake and generalized microvascular function in a population-based cohort. METHODS: In 3144 participants of the Maastricht Study (mean ± SD age: 60 ± 8 y, 51% men) the dietary AGEs Nε-(carboxymethyl)lysine (CML), Nε-(1-carboxyethyl)lysine (CEL), and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) were estimated using the combination of our ultra-performance LC-tandem MS dietary AGE database and an FFQ. Microvascular function was determined in the retina as flicker light-induced arteriolar and venular dilation and as central retinal arteriolar and venular equivalents, in plasma as a z score of endothelial dysfunction biomarkers (soluble vascular adhesion molecule 1 and soluble intracellular adhesion molecule 1, soluble E-selectin, and von Willebrand factor), in skin as the heat-induced skin hyperemic response, and in urine as 24-h albuminuria. Associations were evaluated using multiple linear regression adjusting for demographic, cardiovascular, lifestyle, and dietary factors. RESULTS: Overall, intakes of CML, CEL, and MG-H1 were not associated with the microvascular outcomes. Although higher intake of CEL was associated with higher flicker light-induced venular dilation (ß percentage change over baseline: 0.14; 95% CI: 0.02, 0.26) and lower plasma biomarker z score (ß: -0.04 SD; 95% CI: -0.08, -0.00 SD), the effect sizes were small and their biological relevance can be questioned. CONCLUSIONS: We did not show any strong association between habitual intake of dietary AGEs and generalized microvascular function. The contribution of dietary AGEs to generalized microvascular function should be further assessed in randomized controlled trials using specifically designed dietary interventions.


Assuntos
Diabetes Mellitus/fisiopatologia , Dieta/efeitos adversos , Produtos Finais de Glicação Avançada/administração & dosagem , Microcirculação/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição/efeitos dos fármacos , Idoso , Biomarcadores/sangue , Cromatografia Líquida , Estudos Transversais , Feminino , Humanos , Rim/irrigação sanguínea , Lisina/administração & dosagem , Lisina/análogos & derivados , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Ornitina/administração & dosagem , Estudos Prospectivos , Vasos Retinianos/efeitos dos fármacos , Pele/irrigação sanguínea
11.
Cells ; 10(12)2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34944060

RESUMO

Microcirculation is one of the basic functional processes where the main gas exchange between red blood cells (RBCs) and surrounding tissues occurs. It is greatly influenced by the shape and deformability of RBCs, which can be affected by oxidative stress induced by different drugs and diseases leading to anemia. Here we investigated how in vitro microfluidic characterization of RBCs transit velocity in microcapillaries can indicate cells damage and its correlation with clinical hematological analysis. For this purpose, we compared an SU-8 mold with an Si-etched mold for fabrication of PDMS microfluidic devices and quantitatively figured out that oxidative stress induced by tert-Butyl hydroperoxide splits all RBCs into two subpopulations of normal and slow cells according to their transit velocity. Obtained results agree with the hematological analysis showing that such changes in RBCs velocities are due to violations of shape, volume, and increased heterogeneity of the cells. These data show that characterization of RBCs transport in microfluidic devices can directly reveal violations of microcirculation caused by oxidative stress. Therefore, it can be used for characterization of the ability of RBCs to move in microcapillaries, estimating possible side effects of cancer chemotherapy, and predicting the risk of anemia.


Assuntos
Anemia/sangue , Microcirculação/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Anemia/induzido quimicamente , Anemia/etiologia , Anemia/patologia , Contagem de Eritrócitos , Eritrócitos/efeitos dos fármacos , Eritrócitos/patologia , Humanos , Peróxido de Hidrogênio/metabolismo , Técnicas Analíticas Microfluídicas , Neoplasias/sangue , Neoplasias/complicações , Estresse Oxidativo/genética , terc-Butil Hidroperóxido/farmacologia
12.
Biomolecules ; 11(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34944506

RESUMO

Renin-angiotensin systems produce angiotensin II (Ang II) and angiotensin 1-7 (Ang 1-7), which are able to induce opposite effects on circulation. This study in vivo assessed the effects induced by Ang II or Ang 1-7 on rat pial microcirculation during hypoperfusion-reperfusion, clarifying the mechanisms causing the imbalance between Ang II and Ang 1-7. The fluorescence microscopy was used to quantify the microvascular parameters. Hypoperfusion and reperfusion caused vasoconstriction, disruption of blood-brain barrier, reduction of capillary perfusion and an increase in reactive oxygen species production. Rats treated with Ang II showed exacerbated microvascular damage with stronger vasoconstriction compared to hypoperfused rats, a further increase in leakage, higher decrease in capillary perfusion and marker oxidative stress. Candesartan cilexetil (specific Ang II type 1 receptor (AT1R) antagonist) administration prior to Ang II prevented the effects induced by Ang II, blunting the hypoperfusion-reperfusion injury. Ang 1-7 or ACE2 activator administration, preserved the pial microcirculation from hypoperfusion-reperfusion damage. These effects of Ang 1-7 were blunted by a Mas (Mas oncogene-encoded protein) receptor antagonist, while Ang II type 2 receptor antagonists did not affect Ang 1-7-induced changes. In conclusion, Ang II and Ang 1-7 triggered different mechanisms through AT1R or MAS receptors able to affect cerebral microvascular injury.


Assuntos
Angiotensina II/administração & dosagem , Angiotensina I/administração & dosagem , Benzimidazóis/administração & dosagem , Compostos de Bifenilo/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Pia-Máter/irrigação sanguínea , Traumatismo por Reperfusão/metabolismo , Tetrazóis/administração & dosagem , Angiotensina I/efeitos adversos , Angiotensina II/efeitos adversos , Animais , Benzimidazóis/farmacologia , Compostos de Bifenilo/farmacologia , Feminino , Masculino , Microcirculação/efeitos dos fármacos , Microscopia de Fluorescência , Fragmentos de Peptídeos/efeitos adversos , Pia-Máter/efeitos dos fármacos , Pia-Máter/metabolismo , Proto-Oncogene Mas/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Tetrazóis/farmacologia
13.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830227

RESUMO

Ricin toxin isolated from the castor bean (Ricinus communis) is one of the most potent and lethal molecules known. While the pathophysiology and clinical consequences of ricin poisoning by the parenteral route, i.e., intramuscular penetration, have been described recently in various animal models, the preceding mechanism underlying the clinical manifestations of systemic ricin poisoning has not been completely defined. Here, we show that following intramuscular administration, ricin bound preferentially to the vasculature in both mice and swine, leading to coagulopathy and widespread hemorrhages. Increased levels of circulating VEGF and decreased expression of vascular VE-cadherin caused blood vessel impairment, thereby promoting hyperpermeability in various organs. Elevated levels of soluble heparan sulfate, hyaluronic acid and syndecan-1 were measured in blood samples following ricin intoxication, indicating that the vascular glycocalyx of both mice and swine underwent extensive damage. Finally, by using side-stream dark field intravital microscopy imaging, we determined that ricin poisoning leads to microvasculature malfunctioning, as manifested by aberrant blood flow and a significant decrease in the number of diffused microvessels. These findings, which suggest that glycocalyx shedding and microcirculation dysfunction play a major role in the pathology of systemic ricin poisoning, may serve for the formulation of specifically tailored therapies for treating parenteral ricin intoxication.


Assuntos
Células Endoteliais/efeitos dos fármacos , Glicocálix/efeitos dos fármacos , Ricina/toxicidade , Ricinus/química , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Glicocálix/química , Glicocálix/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Hidrólise , Injeções Intramusculares , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos , Microcirculação/efeitos dos fármacos , Ricina/isolamento & purificação , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/patologia , Suínos , Sindecana-1/química , Sindecana-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Front Immunol ; 12: 702764, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745090

RESUMO

The pathophysiology of acute pancreatitis (AP) is not well understood, and the disease does not have specific therapy. Tryptophan metabolite L-kynurenic acid (KYNA) and its synthetic analogue SZR-72 are antagonists of the N-methyl-D-aspartate receptor (NMDAR) and have immune modulatory roles in several inflammatory diseases. Our aims were to investigate the effects of KYNA and SZR-72 on experimental AP and to reveal their possible mode of action. AP was induced by intraperitoneal (i.p.) injection of L-ornithine-HCl (LO) in SPRD rats. Animals were pretreated with 75-300 mg/kg KYNA or SZR-72. Control animals were injected with physiological saline instead of LO, KYNA and/or SZR-72. Laboratory and histological parameters, as well as pancreatic and systemic circulation were measured to evaluate AP severity. Pancreatic heat shock protein-72 and IL-1ß were measured by western blot and ELISA, respectively. Pancreatic expression of NMDAR1 was investigated by RT-PCR and immunohistochemistry. Viability of isolated pancreatic acinar cells in response to LO, KYNA, SZR-72 and/or NMDA administration was assessed by propidium-iodide assay. The effects of LO and/or SZR-72 on neutrophil granulocyte function was also studied. Almost all investigated laboratory and histological parameters of AP were significantly reduced by administration of 300 mg/kg KYNA or SZR-72, whereas the 150 mg/kg or 75 mg/kg doses were less or not effective, respectively. The decreased pancreatic microcirculation was also improved in the AP groups treated with 300 mg/kg KYNA or SZR-72. Interestingly, pancreatic heat shock protein-72 expression was significantly increased by administration of SZR-72, KYNA and/or LO. mRNA and protein expression of NMDAR1 was detected in pancreatic tissue. LO treatment caused acinar cell toxicity which was reversed by 250 µM KYNA or SZR-72. Treatment of acini with NMDA (25, 250, 2000 µM) did not influence the effects of KYNA or SZR-72. Moreover, SZR-72 reduced LO-induced H2O2 production of neutrophil granulocytes. KYNA and SZR-72 have dose-dependent protective effects on LO-induced AP or acinar toxicity which seem to be independent of pancreatic NMDA receptors. Furthermore, SZR-72 treatment suppressed AP-induced activation of neutrophil granulocytes. This study suggests that administration of KYNA and its derivative could be beneficial in AP.


Assuntos
Ácido Cinurênico/análogos & derivados , Ácido Cinurênico/uso terapêutico , Pancreatite Necrosante Aguda/tratamento farmacológico , Animais , Interleucina-1beta/análise , Ácido Cinurênico/farmacologia , Masculino , Microcirculação/efeitos dos fármacos , N-Metilaspartato/farmacologia , Pancreatite Necrosante Aguda/fisiopatologia , Gravidade do Paciente , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/análise
15.
Toxins (Basel) ; 13(11)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34822587

RESUMO

Snake venom metalloproteinases (SVMP) are involved in local inflammatory reactions observed after snakebites. Based on domain composition, they are classified as PI (pro-domain + proteolytic domain), PII (PI + disintegrin-like domains), or PIII (PII + cysteine-rich domains). Here, we studied the role of different SVMPs domains in inducing the expression of adhesion molecules at the microcirculation of the cremaster muscle of mice. We used Jararhagin (Jar)-a PIII SVMP with intense hemorrhagic activity, and Jar-C-a Jar devoid of the catalytic domain, with no hemorrhagic activity, both isolated from B. jararaca venom and BnP-1-a weakly hemorrhagic P1 SVMP from B. neuwiedi venom. Toxins (0.5 µg) or PBS (100 µL) were injected into the scrotum of mice, and 2, 4, or 24 h later, the protein and gene expression of CD54 and CD31 in the endothelium, and integrins (CD11a and CD11b), expressed in leukocytes were evaluated. Toxins induced significant increases in CD54, CD11a, and CD11b at the initial time and a time-related increase in CD31 expression. In conclusion, our results suggest that, despite differences in hemorrhagic activities and domain composition of the SVMPs used in this study, they behave similarly to the induction of expression of adhesion molecules that promote leukocyte recruitment.


Assuntos
Bothrops , Venenos de Crotalídeos/toxicidade , Metaloendopeptidases/toxicidade , Músculos Abdominais/efeitos dos fármacos , Animais , Moléculas de Adesão Celular/metabolismo , Venenos de Crotalídeos/isolamento & purificação , Regulação da Expressão Gênica/efeitos dos fármacos , Leucócitos/metabolismo , Masculino , Metaloendopeptidases/isolamento & purificação , Camundongos , Microcirculação/efeitos dos fármacos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Fatores de Tempo
16.
Nutrients ; 13(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34836149

RESUMO

Postprandial macro- and microvascular blood flow and metabolic dysfunction manifest with advancing age, so vascular transmuting interventions are desirable. In this randomised, single-blind, placebo-controlled, crossover trial, we investigated the impact of the acute administration of green tea extract (GTE; containing ~500 mg epigallocatechin-3-gallate) versus placebo (CON), alongside an oral nutritional supplement (ONS), on muscle macro- and microvascular, cerebral macrovascular (via ultrasound) and leg glucose/insulin metabolic responses (via arterialised/venous blood samples) in twelve healthy older adults (42% male, 74 ± 1 y). GTE increased m. vastus lateralis microvascular blood volume (MBV) at 180 and 240 min after ONS (baseline: 1.0 vs. 180 min: 1.11 ± 0.02 vs. 240 min: 1.08 ± 0.04, both p < 0.005), with MBV significantly higher than CON at 180 min (p < 0.05). Neither the ONS nor the GTE impacted m. tibialis anterior perfusion (p > 0.05). Leg blood flow and vascular conductance increased, and vascular resistance decreased similarly in both conditions (p < 0.05). Small non-significant increases in brachial artery flow-mediated dilation were observed in the GTE only and middle cerebral artery blood flow did not change in response to GTE or CON (p > 0.05). Glucose uptake increased with the GTE only (0 min: 0.03 ± 0.01 vs. 35 min: 0.11 ± 0.02 mmol/min/leg, p = 0.007); however, glucose area under the curve and insulin kinetics were similar between conditions (p > 0.05). Acute GTE supplementation enhances MBV beyond the effects of an oral mixed meal, but this improved perfusion does not translate to increased leg muscle glucose uptake in healthy older adults.


Assuntos
Glicemia/metabolismo , Suplementos Nutricionais , Microcirculação/efeitos dos fármacos , Músculo Esquelético/irrigação sanguínea , Extratos Vegetais/farmacologia , Chá , Idoso , Idoso de 80 Anos ou mais , Artéria Braquial , Estudos Cross-Over , Feminino , Voluntários Saudáveis , Humanos , Insulina/sangue , Perna (Membro)/irrigação sanguínea , Masculino , Período Pós-Prandial , Método Simples-Cego
17.
Drug Des Devel Ther ; 15: 4243-4255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675487

RESUMO

PURPOSE: Sepsis is the leading condition associated with acute kidney injury (AKI) in the hospital and intensive care unit (ICU), sepsis-induced AKI (S-AKI) is strongly associated with poor clinical outcomes. Curcumin possesses an ability to ameliorate renal injury from ischemia-reperfusion, but it is still unknown whether they have the ability to reduce S-AKI. The aim of this study was to investigate the protective effects of curcumin on S-AKI and to assess its therapeutic potential on renal function, inflammatory response, and microcirculatory perfusion. METHODS: Male Sprague-Dawley (SD) rats underwent cecal ligation and puncture (CLP) to induce S-AKI and immediately received vehicle (CLP group) or curcumin (CLP+Cur group) after surgery. At 12 and 24h after surgery, serum indexes, inflammatory factors, cardiac output (CO), renal blood flow and microcirculatory flow were measured. RESULTS: Serum levels of creatinine (Scr), cystatin C (CysC), IL-6 and TNF-α were significantly lower in the CLP+Cur group than those in the CLP group (P < 0.05). Treatment with curcumin improved renal microcirculation at 24h by measurement of contrast enhanced ultrasound (CEUS) quantitative parameters [peak intensity (PI); half of descending time (DT/2); area under curve (AUC); P < 0.05]. In histopathological analysis, treatment with curcumin reduced damage caused by CLP. CONCLUSION: Curcumin can alleviate S-AKI in rats by improving renal microcirculatory perfusion and reducing inflammatory response. Curcumin may be a potential novel therapeutic agent for the prevention or reduction of S-AKI.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Curcumina/farmacologia , Sepse/tratamento farmacológico , Injúria Renal Aguda/fisiopatologia , Animais , Creatinina/sangue , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , Microcirculação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Circulação Renal/efeitos dos fármacos , Sepse/fisiopatologia , Fatores de Tempo
18.
BMC Neurosci ; 22(1): 57, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525969

RESUMO

RESEARCH AIM: To study the RBCs functional and metabolic parameters and the microcirculatory brain structure at traumatic brain injury (TBI) under the action of 2-ethyl-6-methyl-3-hydroxypyridine succinate. METHODS: A closed TBI was modeled by the free fall of a load on the parietooccipital regions of head. We made studies of the influence of 2-ethil-6-methil-3-hydroxipiridin succinate on aggregation and electrophoretic mobility of RBCs, catalase activity, malonic dialdehyde concentration, adenosine triphosphate and 2.3-biphosphoglycerate (2.3 - BPG) concentrations in RBCs. The state of parenchyma and microcirculatory brain mainstream in post-traumatic period of TBI have been studied on micro-preparations. RESULTS: The use of 2-ethyl-6-methyl-3-hydroxypyridine succinate under conditions of head injury leads to a decrease in MDA concentration and in aggregation of RBCs, to an increase in the 2.3-BPG concentration and RBC electrophoretic mobility compared to the control (group value). The most pronounced changes under the action of 2-ethyl-6-methyl-3-hydroxypyridine succinate were observed 3-7 days after the TBI. Significant indicators of the restoration of the microvasculature and brain tissue provoked by the use of 2-ethyl-6-methyl-3-hydroxypyridine succinate of were evident from the 7th day unlike the control group, where the restoration of structural morphological parameters was observed only on the 12th day of the post-traumatic period. Fast recovery of blood flow under the action of 2-ethyl-6-methyl-3-hydroxypyridine succinate ensured effective restoration of neurons and glia in comparison with the control group. CONCLUSIONS: Early and long-term cytoprotective correction intensifies the oxygen transport function of the blood, prevents and / or reduces disorders of microvessels, neurons and glia in the post-traumatic period, thereby provides correction of hypoxic state and drives to the restoration of brain tissues homeostasis.


Assuntos
Antioxidantes/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Citoproteção/fisiologia , Eritrócitos/fisiologia , Microcirculação/fisiologia , Picolinas/uso terapêutico , Animais , Antioxidantes/farmacologia , Lesões Encefálicas Traumáticas/fisiopatologia , Capilares/efeitos dos fármacos , Capilares/fisiologia , Citoproteção/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Feminino , Microcirculação/efeitos dos fármacos , Picolinas/farmacologia , Ratos
19.
Sci Rep ; 11(1): 18384, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526601

RESUMO

Patients with type 2 diabetes treated with Sodium glucose transporter 2 (SGLT2) inhibitors show reduced mortality and hospitalization for heart failure (HF). SGLT2 inhibitors are considered to activate multiple cardioprotective pathways; however, underlying mechanisms are not fully described. This study aimed to elucidate the underlying mechanisms of the beneficial effects of SGLT2 inhibitors on the failing heart. We generated a left ventricular (LV) pressure overload model in C57BL/6NCrSlc mice by transverse aortic constriction (TAC) and examined the effects of empagliflozin (EMPA) in this model. We conducted metabolome and transcriptome analyses and histological and physiological examinations. EMPA administration ameliorated pressure overload-induced systolic dysfunction. Metabolomic studies showed that EMPA increased citrulline levels in cardiac tissue and reduced levels of arginine, indicating enhanced metabolism from arginine to citrulline and nitric oxide (NO). Transcriptome suggested possible involvement of the insulin/AKT pathway that could activate NO production through phosphorylation of endothelial NO synthase (eNOS). Histological examination of the mice showed capillary rarefaction and endothelial apoptosis after TAC, both of which were significantly improved by EMPA treatment. This improvement was associated with enhanced expression phospho-eNOS and NO production in cardiac endothelial cells. NOS inhibition attenuated these cardioprotective effects of EMPA. The in vitro studies showed that catecholamine-induced endothelial apoptosis was inhibited by NO, arginine, or AKT activator. EMPA activates the AKT/eNOS/NO pathway, which helps to suppress endothelial apoptosis, maintain capillarization and improve systolic dysfunction during LV pressure overload.


Assuntos
Compostos Benzidrílicos/farmacologia , Glucosídeos/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Microcirculação/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/fisiopatologia , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Cardiotônicos/farmacologia , Gerenciamento Clínico , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/etiologia , Imuno-Histoquímica , Metaboloma , Metabolômica/métodos , Camundongos , Modelos Biológicos , Norepinefrina/farmacologia , Disfunção Ventricular Esquerda/diagnóstico , Disfunção Ventricular Esquerda/etiologia
20.
Biomed Pharmacother ; 143: 112093, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34474352

RESUMO

Cardiac arrest (CA) remains a major public health issue. Inflammatory responses with overproduction of interleukin-1ß regulated by NLRP3 inflammasome activation play a crucial role in cerebral ischemia/reperfusion injury. We investigated the effects of the selective NLRP3-inflammasome inhibitor MCC950 on post-resuscitation cerebral function and neurologic outcome in a rat model of cardiac arrest. Thirty-six male rats were randomized into the MCC950 group, the control group, or the sham group (N = 12 of each group). Each group was divided into a 6 h non-survival subgroup (N = 6) and a 24 h survival subgroup (N = 6). Ventricular fibrillation (VF) was electrically induced and untreated for 6 min, followed by 8 min of precordial compressions and mechanical ventilation. Resuscitation was attempted with a 4J defibrillation. Either MCC950 (10 mg/kg) or vehicle was injected intraperitoneally immediately after the return of spontaneous circulation (ROSC). Rats in the sham group underwent the same surgical procedures without VF and CPR. Brain edema, cerebral microcirculation, plasma interleukin Iß (IL-1ß), and neuron-specific enolase (NSE) concentration were measured at 6 h post-ROSC of non-survival subgroups, while 24 h survival rate, neurological deficits were measured at 24 h post-ROSC of survival subgroups. Post-resuscitation brain edema was significantly reduced in animals treated with MCC950 (p < 0.05). Cerebral perfused vessel density (PVD) and microcirculatory flow index (MFI) values were significantly higher in the MCC950 group compared with the control group (p < 0.05). The plasma concentrations of IL-1ß and NSE were significantly decreased in animals treated with MCC950 compared with the control group (p < 0.05). 24 h-survival rate and neurological deficits score (NDS) was also significantly improved in the MCC950 group compared with the control group (p < 0.05). NLRP3 inflammasome blockade with MCC950 at ROSC reduces the circulatory level of IL-1ß, preserves cerebral microcirculation, mitigates cerebral edema, improves the 24 h-survival rate, and neurological deficits.


Assuntos
Anti-Inflamatórios/farmacologia , Edema Encefálico/prevenção & controle , Encéfalo/efeitos dos fármacos , Reanimação Cardiopulmonar/efeitos adversos , Furanos/farmacologia , Indenos/farmacologia , Inflamassomos/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Edema Encefálico/fisiopatologia , Circulação Cerebrovascular/efeitos dos fármacos , Modelos Animais de Doenças , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Masculino , Microcirculação/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...